Learning and Predicting the Evolution of Social Networks

Björn Bringmann, Katholieke Universiteit Leuven
Michele Berlingerio, ISTI-CNR
Francesco Bonchi and Aristides Gionis, Yahoo Research

With the increasing availability of large social network data, there is also an increasing interest in analyzing how those networks evolve over time. Traditionally, the analysis of social networks has focused only on a single snapshot of a network. Researchers have already verified that social networks follow power-law degree distribution, have a small diameter, and exhibit small-world structure and community structure. Attempts to explain the properties of social networks have led to dynamic models inspired by the preferential attachment model, which assumes that new network nodes have a higher probability of forming links with high-degree nodes, creating a “rich-get-richer” effect.

Recently several researchers have turned their attention to the evolution of social networks at a global scale. For example, Jure Leskovec and his colleagues empirically observed that networks become denser over time, in the sense that the number of edges grows superlinearly with the number of nodes. Moreover, this densification follows a power-law pattern. They reported that the network diameter often shrinks over time, in contrast to the conventional wisdom that such distance measures should increase slowly as a function of the number of nodes.

Although some effort has been devoted to analyzing global properties of social network evolution, not much has been done to study graph evolution at a microscopic level. A first step in this direction investigated a variety of network formation strategies, showing that edge locality plays a critical role in network evolution.

We propose a different approach. Following the paradigm of association rules and frequent-pattern mining, our work searches for typical patterns of structural changes in dynamic networks. Mining for such local patterns is a computationally challenging task that can provide further insight into the increasing amount of evolving network data. Beyond the notion of graph evolution rules (GERs), a concept that we introduced in an earlier work, we developed the Graph
Evolution Rule Miner (GERM) software to extract such rules and applied these rules to predict future network evolution.9,10

The merits of our approach go beyond descriptive analysis. In many cases, frequent patterns are used as basic blocks to build more complex data-mining solutions. Our framework can help predict edges among old and new nodes and predict when a new edge is expected to appear. Even when comparing directly with the classic link-prediction problem,9 we show that simple scores based on our evolution rules represent important features providing good prediction performances.

Rules of Graph Evolution

We use the term $G = (V, E, \lambda)$ to denote a graph G over a set of nodes V and edges $E \subseteq V \times V$. The function $\lambda : V \cup E \mapsto \Sigma$ is an assignment from graph nodes and edges to labels from an alphabet Σ. Those labels represent properties, and for simplicity, we assume that they do not change over time. For example, in a social network nodes are users (with properties such as gender, country, and college), while edge labels might represent the type of link (such as friends or family).

We conceptually represent the graph evolution using a series of graphs G_1, \ldots, G_T, so that $G_t = (V_t, E_t)$ represents the graph at time t. Because G_1, \ldots, G_T represent different snapshots of the same graph, we have $V_t \subseteq V$ and $E_t \subseteq E$. For simplicity, we assume that nodes and edges are only added and never deleted as the graph evolves—that is, $V_1 \subseteq V_2 \subseteq \ldots \subseteq V_T$ and $E_1 \subseteq E_2 \subseteq \ldots \subseteq E_T$. Our mining algorithm represents the data set by simply collapsing all the snapshots G_1, \ldots, G_T in a graph G, in which edges are time-stamped with their first appearance. Thus, we have $G = (V, E)$ with $V = \bigcup_{t=1}^{T} V_t = V_T$ and $E = \bigcup_{t=1}^{T} E_t = E_T$. We assign a time stamp $t(e) = \min\{j \mid e \in E_j\}$ to each edge $e = (u, v)$. Overall, a time-evolving graph is described as $G = (V, E, t, \lambda)$, with t assigning time stamps to the edges. (The number of edge deletions in social networks is small enough to be negligible when analyzing the networks' temporal evolution. However, in our framework, we also can handle deletions by slightly changing the matching operator.8)

Consider a time-evolving graph G. Intuitively, a pattern P of G is a subgraph of G that in addition to matching edges of G also matches node and edge labels and edge time stamps.

Now consider the pattern shown in Figure 1 extracted from the Digital Bibliography and Library Project (DBLP) coauthorship network (http://dblp.uni-trier.de), where nodes represent authors and edges between nodes represent coauthorship. Arguably, the essence of the pattern in Figure 1 is that two distinct pairs of connected authors—one collaboration created at time 0 and one at time 1—are later (at time 2) connected by a collaboration involving one author from each pair, plus a third author. We want to account for an occurrence of that event even if it was taking place at times, say, 16, 17, and 18.

These considerations lead to the following definition: Let $G = (V, E, t, \lambda)$ and $P = (V_P, E_P, t_P, \lambda_P)$ be graphs, where G is the time-evolving input graph and P is a pattern. We assume that P is connected. We say that P occurs in G if there exists a $\Delta \in \mathbb{R}$ and a function $\varphi : V_P \mapsto V$ mapping the nodes of P to the nodes in G so that the following conditions hold:

1. If (u, v) is an edge in E_P, then $(\varphi(u), \varphi(v))$ is an edge in E and $\lambda_P(u) = \lambda(\varphi(u))$, $\lambda_P(v) = \lambda(\varphi(v))$, and $\lambda_P((u, v)) = \lambda((\varphi(u), \varphi(v)))$. In other words, an edge in the pattern graph is an edge in the host graph and all labels are matching.

2. If (u, v) is an edge in E_P, then $t(\varphi(u), \varphi(v)) = t(u, v) + \Delta$. That is, the time stamps on the edges are matched, possibly with a Δ offset.

With this definition, we obtain equivalence classes of structurally isomorphic patterns that differ only by a constant on the time stamp of their edges. To avoid redundancies in the search space, we only pick one representative for each equivalence class; the one where the lowest time stamp is zero.

Mining Graph Evolution Rules

Following the association-rule-mining paradigm, we next have to define concepts of support and confidence. Frequent-pattern mining algorithms are based on the notion of support. The support $\sigma(P, D)$ of a pattern P in a data set D is the number of occurrences of P in D. In the classical graph-mining setting where D is a set of graphs (such as molecules), the support is easily defined as the number of these graphs for which P is a subgraph. Various algorithms dealing with this setting exist; gSpan is one of the most efficient.11 However, in our case, the definition of support is more complex because we must compute the support in a unique time-evolving input graph G.

The most important property of a definition of support is antimonotonicity, which is the basis of the Apriori algorithm. This property states
that a pattern’s support should be at least as large as the support of all its super-patterns. The main idea is that whenever a pattern’s support violates the frequency constraint, all its super-patterns can be pruned because they will also violate the minimum frequency constraint. Without antimonotonicity, frequent-pattern mining is essentially infeasible.

For our application of mining rules of evolving networks, we employ the minimum image-based support measure, which is antimonotone and deals with the case of counting pattern occurrences in a single graph, as opposed to other measures that count occurrences in multiple graphs.

To characterize network evolution using frequent patterns, we need to decompose a pattern into the particular sequence of steps and subsequently determine each step’s confidence. Each step can be considered as a rule body → head, with both body and head being patterns. Given a frequent pattern head P_H, the corresponding body P_B is uniquely defined as

$$E_B = \{ e \in E_G | t(e) < \max_{e' \in E_G} (t(e')) \}$$

and

$$V_B = \{ v \in V_G | \deg(v, E_B) > 0 \}$$

where $\deg(v, E_B)$ denotes the degree of v with respect to the edges in E_B. Moreover, we constrain P_B to be connected. The support of a GER is the support of its head. Finally, following the association rules framework, we define a rule’s confidence as the ratio of the support of the rule’s head and body. (This definition yields a unique body for each head and therefore a unique confidence value for each head. This lets us represent the rules by the head only, as in Figure 1. This definition disallows disconnected graphs as body due to the lack of a support definition for disconnected graphs. As a consequence, not all frequent patterns can be decomposed into GERs.)

Figure 2 shows an example of a real GER extracted from the DBLP. The node labels represent the class of the node’s degree—that is, a node labeled with a large number is a node with high degree. In this example, label 3 indicates nodes with a degree larger than 50. Additionally, edge labels capture the time information and represent the (relative) year in which the first collaboration between two authors was established. Intuitively, the rule in Figure 2 might be read as a local evidence of preferential attachment: a large-degree node (label 3), which at time t is connected to four medium-degree nodes (label 2), at time $t + 1$ will be connected to a fifth node. The collaboration-rich researcher gets richer.

We developed a tool for mining rules of graph evolution using the algorithms we’ve just described. Our GERM tool is an adaptation of an earlier algorithm, which is in turn an adaptation of gSpan. (GERM’s executable code is freely available at http://www-kdd.isti.cnr.it/GERM.) Thus, GERM, like gSpan, is based on a depth-first search (DFS) traversal of the search space, which leads to low memory requirements. Indeed, in all our experiments, the memory consumption was negligible.

Figure 3 shows the basic structure of the GERM graph miner. The most involved part of the algorithm is the support computation. The starting point of our implementation is the frequent-subgraph mining framework, in which the gSpan support calculation is replaced by the minimum image-based support.

One of gSpan’s key elements is the use of the minimum DFS code, which is a canonical form introduced to avoid multiple generations of the same pattern. We must change this canonical form to enable GERM to mine patterns with relative time. As we explained previously, we only want one representative pattern per equivalence class—the one with the lowest time stamp being zero. We therefore modify the canonical form such that the first edge in the canonical form is always the one with the lowest time stamp.

![Figure 2. A graph evolution rule (GER) extracted from the Digital Bibliography and Library Project (DBLP) coauthorship network.](image-url)

![Figure 3. The basic structure of the Graph Evolution Rule Miner (GERM).](image-url)

1: if $s \neq \min(s)$ then return // using our canonical form
2: $S \leftarrow S \cup s$
3: enumerate all s potential children with one edge growth as s'
4: for all enumerated s' do
5: // considering Δ offset and our support definition
6: if $\sigma(s', G)$ minSupp then
7: SubgraphMining(G, S, s')
When matching a pattern to the host graph, we implicitly fix a value of Δ, which represents the time gap between the pattern and host graph. To complete the match, all remaining edges must adhere to this value of Δ. If all the edges match with the Δ set when matching the first edge, the pattern matches the host graph with that value of Δ.

GERM’s computational complexity is similar to that of gSpan in the multiple input graphs setting, since one of the factors is the total number of nodes in both cases. However, the maximum node degree d is a second factor because it increases the possible combinations that have to be evaluated for each subgraph-isomorphism test. In detail, the worst-case complexity for computing the support of a pattern with m nodes on a database with k graphs, where n is the average number of nodes among the input graphs, equals $O(knd^m)$. In traditional applications of frequent-subgraph mining in the multiple input graphs setting, such as biology and chemistry, where the graphs typically represent molecules, n is approximately 30 to 40 nodes and thus significantly smaller than in a network with $n > 10,000$. On the other hand, k equals 1 in the network setting but is significantly bigger in the molecular setting ($k > 1,000$), leading to roughly the same number of total nodes. However, d usually reaches much higher values in a network than the molecular setting where the graphs are of small size and low degree. Therefore, although the worst-case complexity is the same as for gSpan, social network mining is harder in practice.

For this reason, we equip GERM with a user-defined parameter on the maximum number of edges in a pattern. This constraint lets us deal more efficiently with the DFS strategy by reducing the search space.\(^8\)

Experimental Results

To evaluate GERM, we experimented on four real-world data sets:

- Flickr (www.flickr.com) is a popular photo-sharing portal. We sampled a set of Flickr users with edges representing mutual friendship and time stamp the moment when the bidirectional contact is established. We generated one set of evolving graphs with monthly granularity and one with weekly granularity.
- Y360 was an online service for blogging, sharing pictures, movies, and staying in contact with friends. We sampled a set of users and processed the data, as in the Flickr data set.
- The DBLP data set is based on a recent snapshot of the DBLP, which has a yearly time granularity. We represented authors using vertices with a connecting edge if they are coauthors. Time stamps on edges represent the year of the first co-authorship.
- arXiv (arxiv.org) is a coauthorship graph on physics publications. The graph we obtained (arxiv92-01) represents coauthorships that emerged between 1992 and 2001 with yearly time granularity.

We only report some of our experimental results here. A more comprehensive set of experiments, including experiments on runtime, scalability, and the influence of the parameters, is available in our previous work.\(^8\)

Table 1 summarizes some basic statistics of the four data sets. For each data set, we report the number of nodes, the number of edges, the average degree (z), the number of snapshots, and the number of connected components (CC) as well as the same statistics for the largest connected component (LCC). The table shows the size of the LCC and the number of connected components in all data sets. We also report the growth rate, which we define as the ratio of the number of edges in two different snapshots: the total growth considering the last and the first snapshots and the average growth considering every two consecutive snapshots.

Next, we considered whether the extracted patterns carry information that characterizes the analyzed networks. We used a minimum support

| Data set | Period | $|V|*$ | $|E|*$ | z* | T* | CC* | $|V|$ | $|E|$ | z | Total | Average |
|----------------|----------|-------|-------|------|------|-----|-------|-------|-----|-------|---------|
| flickr-month | 03-05 | 147,463 | 241,391 | 3.27 | 24 | 16,357 | 74,792 | 182,417 | 4.88 | 60,347.20 | 2.832960 |
| flickr-week | 02-05 | 149,863 | 246,331 | 3.29 | 76 | 16,661 | 76,058 | 186,504 | 4.90 | 246,331.00 | 0.241055 |
| y360-month | 04-05 | 177,278 | 205,412 | 2.32 | 10 | 17,926 | 110,627 | 155,089 | 2.80 | 68,470.70 | 5.154020 |
| y360-week | 04-05 | 177,278 | 205,412 | 2.32 | 41 | 17,926 | 110,627 | 155,089 | 2.80 | 68,470.70 | 0.834340 |
| arxiv92-01 | 92-01 | 70,951 | 289,226 | 8.15 | 10 | 6,563 | 49,008 | 260,938 | 10.65 | 803.41 | 1.691140 |
| dblp92-02 | 92-02 | 129,073 | 277,081 | 4.29 | 11 | 13,444 | 83,606 | 220,098 | 5.27 | 25.52 | 0.408188 |

\(^*\)|$|V|$ is the number of nodes, $|E|$ is the number of edges, z is the average degree, T is the number of snapshots, and CC is the number of connected components.
threshold of 5,000 for all but the data sets involving weeks, for which we used a minimum threshold of 3,000. We compared all pairs of data sets with respect to the confidence of the rules.

Figure 4 shows the pairwise comparison results. From the plots, we can see that the comparison between a coauthorship network (arXiv or DBLP) and a social network (Y360) as in Figures 4a, 4b, and 4c show...
different confidence values of the rules for each data set (using Flickr instead of Y360 gives the same results).

In contrast, the comparison of two coauthorship networks (arXiv and DBLP in Figure 4d) or two social networks (Flickr and Y360 in Figure 4e) reveals that all rules are in the proximity of the bisector, meaning that each rule has similar confidence values in both data sets. We do not yet have a clear understanding of this striking behavior, but it indicates that GERs capture some aspects characterizing how different types of networks evolve.

Predicting the Future

Given a pair of nodes in an evolving network, link prediction is the problem of estimating the likelihood that an edge will eventually be formed between these two nodes. In the context of a bibliographic collaboration network, link prediction estimates the likelihood that two authors will collaborate in the future. In the context of a social network such as Flickr or Facebook, it estimates the likelihood that two users will become friends.

David Liben-Nowell and Jon Kleinberg defined the link prediction problem as follows: given a snapshot of a social network at time \(t \) and a future time \(t' \), we can predict the new social ties that are likely to appear in the network within the time interval \([t, t']\). In their framework, Liben-Nowell and Kleinberg only considered features based on the network’s link structure. For instance, they considered a predictor to be the number of common neighbors \(CN(i, j) \) of the two nodes \(i \) and \(j \) at time \(t \). Another predictor that performed well is the Adamic-Adar measure \(AA(i, j) \), which is the sum of \(\log(d(z))^{-1} \) over all common neighbors \(z \) of \(i \) and \(j \). (Liben-Nowell and Kleinberg proposed other features based on the ensemble of all paths between \(i \) and \(j \). However, even considering those more complex features, Adamic-Adar is among the top-performing predictors in all the networks studied.6)

We can use the rules extracted using the GERM algorithm to predict edges in future instances of the network. We start with an input network \(N \) and a set of GERs \(\mathcal{R} \) extracted from that network. For the sake of simplicity, we do not use all rules extracted, only the rules that have only one edge \((v_1, v_2) \) of difference between the head and the body. Our approach decomposes the prediction problem into two steps. The first step identifies all the embeddings of the body of the rule into the network. Each embedding of a rule results in exactly one candidate for prediction \(p_c = (v_1, v_2) \) between nodes \(v_1 \) and \(v_2 \). We consider those embeddings only as candidate predictions, and we devise a set of scoring functions that let us make a more elaborate decision about those candidate predictions. Each of these prediction candidates \(p_c \) might result from different rules or different embeddings of the same rule. Figure 5 shows an example where the rule GER1 predicts the same edge (dashed red) twice. In fact, GER1 can be matched twice in the network, once to the upper right triangle and once to the lower left triangle, in either case with \(\Delta = 5 \).

As a result, we know for each \(p_c \), the rule \(R \) gives rise to the prediction associated with the respective count \(\text{count}(p_c, R) \)—that is, the number of times a rule can be matched—the support of the rule \(\text{sup}(R) \), and its confidence \(\text{conf}(R) \). Based on this information, we define four different scores \(\text{pred score}(p_c, R) \) for each candidate \(p_c \) and rule \(R \):

- \(\text{score}_1(p_c, R) = \text{conf}(R) \)
- \(\text{score}_2(p_c, R) = \text{sup}(R) \times \text{conf}(R) \)
- \(\text{score}_3(p_c, R) = \text{conf}(R) \times \text{count}(p_c, R) \)
- \(\text{score}_4(p_c, R) = \text{sup}(R) \times \text{conf}(R) \times \text{count}(p_c, R) \)

To obtain one score for each prediction candidate, we need to accumulate the scores for a particular prediction candidate given by all the rules. We decided to take the two simplest ways of accumulation: the maximum and the sum. Additionally, we explored a small variant that ensures that we only account for the score of the most specific rules. We call \(\mathcal{R}_p \) the set of all rules that yield a candidate prediction \(p_c \), and \(\mathcal{R}_p^* \) the subset of \(\mathcal{R}_p \) such that there are no two rules \(R_1, R_2 \) in \(\mathcal{R}_p^* \) with \(R_1 \subseteq R_2 \). This gives us four possible ways to accumulate:

- \(\text{pred}_1(p_c) = \sum_{R \in \mathcal{R}_p} \text{score}_1(p_c, R) \)
- \(\text{pred}_2(p_c) = \max_{R \in \mathcal{R}_p^*} \text{score}_1(p_c, R) \)
Figure 6. Plot of precision versus recall on the Digital Bibliography and Library Project (DBLP) for the task of predicting old-new edges. Our scores are derived from graph evolution rules (GERs) computed with minSupp = 5,000, minConf = 0, and at most five edges.

Table 2. Statistics on the new edges appearing in a target period.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Target period</th>
<th>Old-old edges</th>
<th>Old-new edges</th>
<th>New-new edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>dblp92-02</td>
<td>2003</td>
<td>12,121 (18.0%)</td>
<td>29,212 (43.4%)</td>
<td>25,998 (38.6%)</td>
</tr>
<tr>
<td>flickr-month</td>
<td>April 2005</td>
<td>34,373 (37.2%)</td>
<td>35,545 (38.5%)</td>
<td>22,512 (24.3%)</td>
</tr>
<tr>
<td>flickr-week</td>
<td>6th week, 2005</td>
<td>4,365 (41.8%)</td>
<td>3,885 (37.3%)</td>
<td>2,181 (20.9%)</td>
</tr>
</tbody>
</table>

Figure 5 depicts an example GER that might be used for predicting a new edge connected to a new node (GER2). The same rule might also match the additional node in the head of the rule to an already existing node in the network, thus helping predict new edges among existing nodes as in the standard Liben-Nowell and Kleinberg framework.

This is an important feature of our framework because many new nodes join the network over time. Table 2 reports some statistics on the target prediction period that we adopted for our experiments on three different data sets. In particular, the table reports the numbers of edges between two old nodes (that is, old-old nodes that existed in the training period), one old and one new node (old-new), and two new nodes (new-new). The old-old category includes those being handled by classical link prediction (and also by our framework), the old-new category are those cases that our framework can handle but classical link prediction cannot. Neither our framework nor the classic link-prediction framework can handle the new-new category. As Table 2 shows, the old-new category represents a large fraction of the newly created edges for all data sets.

Figure 6 reports precision versus recall curves on various scores of our framework for the task of predicting only old-new edges.

Next we report our experimental evaluation in the classic link-prediction setting (predicting only old-old edges). Figures 7 and 8 report the results for flickr-week and flickr-month data sets, respectively. Both figures show precision-recall plots for various methods. In particular, we report CN and AA as baselines, one of our scores—namely, pred\(_{1,3}\)—plus five combinations of our score with AA.

The combination of our score pred\(_{x,y}\) with AA for an edge \(e\) is obtained by taking \((\text{pred}_{x,y}(e) + 1) \times (\text{AA}(e) + 1)\), where AA and pred\(_{x,y}\) are normalized before combining.

By comparing AA with our “pure” pred\(_{1,3}\) score, we can see that our method achieves a much higher precision for low recall levels, but it performs worse than AA at higher recall levels. This observation suggests combining AA with our methods. Figures 7 and 8 confirm that the combination achieves the best of the two methods, outperforming each of the methods combined in the majority of cases.

From this preliminary analysis, we can conclude that our method pred\(_{1,3}\) is the most robust and stable among our predictors, and it should be...
combined with AA for an effective link prediction.

Our framework, based on the extraction of local frequent patterns from the past evolution, represents a very different approach from the classic link-prediction method, which adopts features based on the network’s link structure at time \(t \) to predict if an edge will appear in the future interval \([t, t'] \). The two features common neighbors and Adamic-Adar can essentially be considered rules that predict closing triangles, such as GER1 in Figure 5. However, even if we consider only the closing-triangle rule in Figure 5 (and not the ensemble of all the extracted rules as our method prescribes), we incorporate some additional information about how the network evolved in the past in two ways. First, the time stamps on the edges allow for a matching sensitive to the current evolution instead of viewing the network without its evolutionary growth. Further, the confidence describes how likely such an evolution was in the past. This information is completely discarded in classic link prediction, which only uses the network’s structure. Implicit in our work is the assumption that a model’s predictive power can be strengthened by learning from the network’s entire evolution history and not just using information presently available.

Acknowledgments
Björn Bringmann’s research is supported by the European Commission under the Seventh Framework Program FP7-ICT-2007-C FET-Open, under contract number BISON-211898.

References

